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Oscillation of second-order nonlinear difference
equations with sublinear neutral term

Martin Bohner, Hassan A. El-Morshedy,
Said R. Grace, Ilgin Sağer

Abstract. We establish some new criteria for the oscillation of second-
order nonlinear difference equations with a sublinear neutral term. This
is accomplished by reducing the involved nonlinear equation to a linear
inequality.

1. Introduction

This paper deals with oscillatory behavior of all solutions of nonlinear
second-order difference equations with a sublinear neutral term of the form

(1) ∆
(
an∆

(
xn + pnx

α
n−k
))

+ qnx
β
n+1−m = 0.

We assume that
(H1) 0 < α < 1 and β > 0 are ratios of positive odd integers,
(H2) {an}, {pn}, {qn}, n ≥ n0, are positive real sequences,

lim
n→∞

pn = 0 and
∞∑

s=n0

1

as
<∞,

(H3) k ∈ N and m ∈ N0.
Let ξ = max{k,m − 1}. By a solution of (1), we mean a real sequence
{xn} defined for all n ≥ n0 − ξ that satisfies (1) for n ≥ n0. A solution of
(1) is said to be oscillatory if its terms are neither eventually positive nor
eventually negative, and otherwise it is called nonoscillatory. Equation (1)
is said to be oscillatory if all its solutions are oscillatory.

In recent years, there has been a great interest in establishing criteria
for the oscillation and asymptotic behavior of solutions of various classes of
second-order difference equations, see [1, 2, 4, 9–12, 15, 18, 20, 21, 24] and the
references cited therein. However, it seems that there are no known results
regarding the oscillation of second-order difference equations with positive
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2 Nonlinear difference equations with sublinear neutral term

sublinear neutral term. More exactly, the existing literature does not provide
any criteria which ensure oscillation of all solutions of (1). In view of this
motivation, our aim in this paper is to present sufficient conditions which
ensure that all solutions of (1) are oscillatory. For related results concerning
second-order differential equations with sublinear neutral term, we refer the
reader to [3,16,17,23]. Some related results concering second-order dynamic
equations on time scales can be found in [6–8,13,14,19,22].

2. Main Results

For n ≥ n∗0 for some n∗0 ≥ n0, we let

An =
∞∑
s=n

1

as
.

For convenience, for some 0 < ν ≤ 1 and n ≥ n∗0, we set

yn = xn + pnx
α
n−k,

Pn = 1− pn
Aαn−k

A
1+(1−α)ν
n

≥ 0

and

Qn = qnA
(1+ν)(β−1)
n+1 P βn+1−m.

In the following, we establish a new oscillation result for (1) when β ≥ 1.

Theorem 2.1. Let β ≥ 1. Assume (H1)–(H3). If

(2) lim sup
n→∞

n∑
s=n∗

0

[
QsAs+1 −

1

4asAs+1

]
=∞,

then (1) is oscillatory.

Proof. Let xn be a nonoscillatory solution of (1), say xn > 0, xn+1−m > 0,
xn−k > 0, and yn > 0 for n ≥ n1 for some n1 ≥ n∗0. It is easy to see that
yn > 0, n ≥ n1, and (1) becomes

(3) ∆ (an∆yn) + qnx
β
n+1−m = 0.

Thus ∆ (an∆yn) ≤ 0 for n ≥ n1, which implies that yn is bounded. Also,
the decreasing nature of an∆yn implies that (I) ∆yn > 0 or (II) ∆yn < 0
for n ≥ n∗1 ≥ n1. Therefore, yn converges, and hence

lim
n→∞

yn = lim
n→∞

(xn + pnx
α
n−k) = lim

n→∞
xn,

since limn→∞ pn = 0. Now, we consider Case (I). Since yn is a positive
increasing sequence, there exist n2 ≥ n∗1 and d > 0 such that

(4) xn > d for n ≥ n2.
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Substituting (4) into (3), we get

(5) ∆ (an∆yn) + qnd
β < 0 for n ≥ n2.

Summing (5) from n2 to n− 1, we obtain

(6) an∆yn − an2∆yn2 + dβ
n−1∑
s=n2

qs < 0 for n ≥ n2.

But (2) implies that
∞∑

n=n2

qn =∞,

which together with (6) yields

lim
n→∞

an∆yn = −∞,

a contradiction due to the eventual positivity of an∆yn.
Next, we consider Case (II). Define the sequence {vn} by

(7) vn =
an∆yn
yn

for n ≥ n1.

Then vn < 0 for n ≥ n1. Also, the decreasing nature of an∆yn implies that

(8) ∆ys ≤
an
as

∆yn for s ≥ n ≥ n1.

Summing (8) from n to r − 1 ≥ n, we obtain

yr − yn ≤ an∆yn

(
r−1∑
s=n

1

as

)
,

which, by letting r →∞, leads to

(9)
an∆yn
yn

An ≥ −1 for n ≥ n1,

i.e.,

(10) vnAn ≥ −1 for n ≥ n1.

On the other hand, we find from (9) that

∆

(
yn
An

)
=
An∆yn − yn∆An

AnAn+1
=
An∆yn + yn

an

AnAn+1
≥ 0,

for n ≥ n1, and thus

(11)
yn
An
≥ yn−k
An−k

for n ≥ n1 + k.

Now,
xn = yn − pnxαn−k ≥ yn − pnyαn−k for n ≥ n1 + k,
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and using (11), we obtain

(12) xn ≥ yn − pn
Aαn−k
Aαn

yαn =

(
1− pn

Aαn−k
Aαn

yα−1n

)
yn.

Since yn/An is positive and increasing, we get

(13)
yn
An
≥ yn1

An1

=: γ > 0 for n ≥ n1.

Since {An} is positive and converging to zero, there exists n3 ≥ n1 + k such
that

(14) 0 < Aνn ≤ γ for all n ≥ n3.

Hence, by (13) and (14),

(15) yn ≥ A1+ν
n for n ≥ n3.

Using (15) in (12), we get

(16) xn ≥
(

1− pn
Aαn−k
Aαn

A(1+ν)(α−1)
n

)
yn = Pnyn for n ≥ n3.

By (16), from (3), we have

(17)

∆ (an∆yn) =− qnxβn+1−m

≤− qnP βn+1−my
β
n+1−m

≤− qnP βn+1−my
β
n+1 for n ≥ n3,

where we also used the decreasing nature of yn in the last estimate. Now
(17), in view of (15), leads to

(18)
∆ (an∆yn) ≤− qnA(1+ν)(β−1)

n+1 P βn+1−myn+1

=−Qnyn+1 for n ≥ n3.

Taking the difference of both sides of (7) and using the decreasing nature of
an∆yn, we get

(19)

∆vn =
yn∆(an∆yn)− an(∆yn)2

ynyn+1

=
∆(an∆yn)

yn+1
− yn
anyn+1

v2n

≤∆ (an∆yn)

yn+1
− v2n
an

for n ≥ n3,

where we have used again the decreasing nature of yn. Combining (19) and
(18), we have

(20) ∆vn ≤ −Qn −
v2n
an

for n ≥ n3.
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Using (20), we get

∆(Anvn) =vn∆An +An+1∆vn

=− vn
an

+An+1∆vn

≤− vn
an
−An+1Qn −

An+1v
2
n

an

≤−An+1Qn +
1

4anAn+1
,

and summing this resulting inequality from n3 to n and using (10) yields
n∑

s=n3

[
QsAs+1 −

1

4asAs+1

]
≤An3vn3 −An+1vn+1

≤1 +An3vn3 <∞ for n ≥ n3,

contradicting (2). This completes the proof. �

When β = 1, we have the following immediate corollary from Theorem
2.1.

Corollary 2.1. Let β = 1. Assume (H1)–(H3). If

(21) lim sup
n→∞

n∑
s=n∗

0

[
qsPs+1−mAs+1 −

1

4asAs+1

]
=∞,

then (1) is oscillatory.

Next, we establish an oscillation result when 0 < β < 1.

Theorem 2.2. Let 0 < β < 1. Assume (H1)–(H3). If

(22) lim sup
n→∞

n∑
s=n∗

0

[
LqsP

β
s+1−mAs+1 −

1

4asAs+1

]
=∞ for some L > 0,

then (1) is oscillatory.

Proof. Let xn be a nonoscillatory solution of (1), say xn > 0, xn+1−m > 0,
xn−k > 0, and yn > 0 for n ≥ n1 for some n1 ≥ n∗0. Proceeding as in the
proof of Theorem 2.1, we obtain the two cases (I) ∆yn > 0 or (II) ∆yn < 0 for
n ≥ n1. Next, we consider only Case (II) as Case (I) can be treated similarly
as in the proof of Theorem 2.1. Recall that yn is positive and decreasing
with limn→∞ yn = limn→∞ xn. Then we have either limn→∞ yn = d1 > 0 or
limn→∞ yn = 0. The first case implies that limn→∞ xn = d1. Thus, there
exist d2 > 0 and n∗1 ∈ N such that xn ≥ d2 for all n ≥ n∗1. Hence we can
obtain a contradiction similarly as in Case (I). The other case implies that
for K := L1/(β−1) > 0, there exists n∗2 ∈ N such that

(23) 0 < yn < K for all n ≥ n∗2.
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Now proceeding as in the proof of Theorem 2.1, we obtain (17), which with
(23) yields

0 ≥ ∆(an∆yn) + qnP
β
n+1−my

β
n+1

= ∆(an∆yn) +
qnP

β
n+1−myn+1

y1−βn+1

≥ ∆(an∆yn) +
qnP

β
n+1−myn+1

K1−β

= ∆(an∆yn) + LqnP
β
n+1−myn+1 for n ≥ n3,

with some n3 ≥ n∗2. The remainder of the proof is similar to that of Theorem
2.1 and hence is omitted. �

3. Examples and Remarks

First, we give two examples for the case β > 1.

Example 3.1. Consider the second-order equation

(24) ∆

(
n(n+ 1)∆

(
xn +

xαn−k
n2

))
+ (n+ 1)6x

5
3
n+1−m = 0, n ∈ N.

Here, 0 < α < 1 is a ratio of positive odd integers, β = 5/3, the delays are
k ∈ N and m ∈ N0, and

an = n(n+ 1), pn =
1

n2
, and qn = (n+ 1)6.

We let ν = 1. It is easy to see that (H2) holds. Also,

An =
1

n
and Pn = 1− 1

nα(n− k)α
.

Moreover,

QnAn+1−
1

4anAn+1
= (n+1)

11
3

[
1− 1

(n+ 1−m)α(n+ 1−m− k)α

] 5
3

− 1

4n
.

Thus,

lim
n→∞

(
QnAn+1 −

1

4anAn+1

)
=∞.

Therefore, (2) of Theorem 2.1 is satisfied, and hence (24) is oscillatory.

Example 3.2. Consider the second-order equation

(25) ∆

(
n(n+ 1)∆

(
xn +

xαn−k
n2

))
+ (n+ 1)2x

5
3
n+1−m = 0, n ∈ N.

Here, all data are the same as in Example 3.1 except

qn = (n+ 1)2,
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and therefore

QnAn+1 =
1

(n+ 1)
1
3

[
1− 1

(n+ 1−m)α(n+ 1−m− k)α

] 5
3

≥ 1

n
· 1

2
,

for n ≥ N with some N ∈ N, and thus
M∑
n=N

(
QnAn+1 −

1

4anAn+1

)
=

M∑
n=N

(
QnAn+1 −

1

4n

)

≥
M∑
n=N

1

4n
→∞ as M →∞.

Hence, (2) of Theorem 2.1 is satisfied, and thus (25) is oscillatory.

Next, we give an example in the case β = 1.

Example 3.3. Consider the second-order equation
(26)

∆

(
n(n+ 1)∆

(
xn +

3

√
(n− k)xn−k

8n4

))
+
n+ 1

n
xn+1−m = 0, n ∈ N.

Here, α = 1/3, β = 1, the delays are k ∈ N and m ∈ N0, and

an = n(n+ 1), pn =
3

√
n− k
8n4

and qn =
n+ 1

n
.

We let ν = 1/2. It is easy to see that (H2) holds. Also,

An =
1

n
and Pn =

1

2
.

Moreover,

qnPn+1−mAn+1 −
1

4anAn+1
=

qn
2(n+ 1)

− 1

4n
=

1

4n
.

Therefore, (21) of Corollary 2.1 is satisfied, and hence (26) is oscillatory.

Finally, we present an example in the case 0 < β < 1.

Example 3.4. Consider the second-order equation

(27) ∆
∆
(
xn + 4(α−1)(n−1)−(kα+1)/2xαn−k

)
2n

+ n8nxβn+1−m = 0, n ∈ N.

Here, 0 < α < 1 and 0 < β < 1 are ratios of positive odd integers, the delays
are k ∈ N and m ∈ N0, and

an =
1

2n
, pn = 4(α−1)(n−1)−(kα+1)/2 and qn = n8n.

We let ν = 1. It is easy to see that (H2) holds. Also,

An =
1

2n−1
and Pn =

1

2
.
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Moreover,

LqnP
β
n+1−mAn+1 −

1

4anAn+1
= Ln22n−β − 22n−2,

which tends to infinity for any constant L > 0. Therefore, (22) of Theorem
2.2 is satisfied, and hence (27) is oscillatory.

Remark 3.1. The results of this paper are presented in a form that makes
it easy to study extensions to higher-order equations. It would also be of
interest to use the approach here to study (1) with α > 1, i.e., (1) with
superlinear neutral term.

Remark 3.2. Another possibility for extension of the presented results
would be to consider the time-scales [5, 8] analogue of (1).
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